
Cornell CS 5740: Natural Language Processing
Yoav Artzi, Spring 2023

Raw Data
Neural Language Models and Transformers

1

• LMs so far: count-based estimates of probabilities

- Counts are brittle and generalize poorly, so we added
smoothing

• The quantity that we are focused on estimating (e.g., for tri-gram
model):

• Can we use neural networks for this task? What would it give us?
What are the costs?

p(x̄) =
n

∏
i=1

p(xi |xi−1, xi−2), where x0, x−1 = * , xi ∈ 𝒱 ∪ {STOP}

Neural Language Models

2

• Instead of having count-based distributions, parameterize them

• How would we model this with a neural network?

- Hint: so far, only learned about MLPs

p(xi |xi−1, xi−2; θ)

A Very Simple Approach
Neural Language Models

3

• A simple MLP-ish model

where is an embedding function, and

• The parameters are estimated by maximizing the log probability
of the data

• During inference, you compute the neural network every time you
need a value from the probability distribution

p(xi = w |xi−1, xi−2; θ) = softmax(y)w

y = b + Wx + U tanh(d + Hx)
x = [ϕ(xi−1); ϕ(xi−2)]

ϕ θ = (b, d, W, U, H, C, ϕ)

θ

A Very Simple Approach
Neural Language Models

4
[Bengio et al. 2003]

• A simple MLP-ish model

where is an embedding function, and

• What does it give us? Think smoothing …

- What does the do the smoothing problem?

• What are the costs?

p(xi = w |xi−1, xi−2; θ) = softmax(y)w

y = b + Wx + U tanh(d + Hx)
x = [ϕ(xi−1); ϕ(xi−2)]

ϕ θ = (b, d, W, U, H, C, ϕ)

softmax(yw) =
exp(yw)

∑y∈y exp(y)

softmax

A Very Simple Approach
Neural Language Models

5

• A simple MLP-ish model

where is an embedding function, and

• What does it give us? Think smoothing …

- What does the do the smoothing problem?

• What are the costs?

p(xi = w |xi−1, xi−2; θ) = softmax(y)w

y = b + Wx + U tanh(d + Hx)
x = [ϕ(xi−1); ϕ(xi−2)]

ϕ θ = (b, d, W, U, H, C, ϕ)

softmax(y)w =
exp(yw)

∑y∈y exp(y)

softmax

A Very Simple Approach
Neural Language Models

6

• The MLP approach can help with smoothing at some costs

• But essentially makes the same modeling choices

- Assuming a finite horizon — the Markov assumption

- We adopted this assumption because of sparsity (i.e.,
smoothing) challenges

• Can neural networks allow us to revisit these assumptions?

Neural Language Models

7

• The Markov assumption was critical for generalization

• But: it’s terrible for natural language!

- “I ate a strawberry with some cream”

- “I ate a strawberry that was picked in the field by the best
farmer in the world with some cream”

• Dependencies can bridge arbitrarily long linear distances

- We saw that already with word2vec

• It get even worse beyond the single sentence

Revisiting the Markov Assumption
Neural Language Models

8

• Without the Markov assumption, the model is

• We need to model the parameterized distribution

- Note: shifted the index here, because it will make things nicer
later on — just a notation change

• How can we do this with the tools we already know?

p(x̄) =
n

∏
i=1

p(xi |x1, …, xi−1)

p(xi+1 |x1, …, xi; θ)

An MLP with No Markov Assumption
Neural Language Models

9

• We need to model the parameterized distribution

• We can just treat the context as a bag of words

- Then it doesn’t matter how long it is

- A very simple example (two layer MLP)

p(xi+1 |x1, …, xi; θ)

h = tanh(W′
1
i ∑i

j=1 ϕ(xj) + b′)
p(xi+1 |x1, …, xi) = softmax(W′ ′ h + b′ ′)

An MLP with No Markov Assumption
Neural Language Models

10

• We can just treat the context as a bag-of-words, for example:

• Why is this a terrible idea?

h = tanh(W′
1
i ∑i

j=1 ϕ(xj) + b′)

p(xi+1 |x1, …, xi) = softmax(W′ ′ h + b′ ′)

An MLP with No Markov Assumption
Neural Language Models

11

• We can just treat the context as a bag-of-words, for example:

• Why is this a terrible idea?

- Order matters a lot in language 🤦

- But it worked so well for text categorization … 😮💨

- What may work for tasks that just require focusing on salient words
(e.g., topic categorization), is not sufficient for language models
(i.e., next-word prediction)

h = tanh(W′
1
i ∑i

j=1 ϕ(xj) + b′)

p(xi+1 |x1, …, xi) = softmax(W′ ′ h + b′ ′)

An MLP with No Markov Assumption
Neural Language Models

12

• BOW can handle arbitrary length 😁

• But losses any notion of order 😩

• Furthermore, dependencies are complex 😵💫

- Not following linear order

- Importance follow complex patterns

‣ “I ate a strawberry that was picked in the field
by the best farmer in the world with some
cream”

‣ “I ate a strawberry that was picked in the field
by the best farmer in the world with clippers”

- The model needs to focus on different parts in
the context to predict different words

Bag of Words
Neural Language Models

13

• We can view BOW as a attending to all previous tokens equally

• So can rewrite our simple example MLP using a uniform distribution

• What if we want to attend to past tokens in an adaptive way?

- We need a way to do weighted processing context

- Can achieve this if we can adapt the distribution based on context

p(j) =
1
i

, j = 1,…, i

h = tanh(W′ ∑i
j=1 p(j)ϕ(xj) + b′)

p(xi+1 |x1, …, xi) = softmax(W′ ′ h + b′ ′)

A Uniform Distribution Over Past Words
Bag of Words

14

• We can view BOW as a attending to all previous tokens equally

• So can rewrite our simple example MLP using a uniform distribution

• What if we want to attend to past tokens in an adaptive way?

- We need a way to do weighted processing of context to represent that
different words depend on context differently

- This weighted processing must reflect ordering

p(j) =
1
i

, j = 1,…, i

h = tanh(W′ ∑i
j=1 p(j)ϕ(xj) + b′)

p(xi+1 |x1, …, xi) = softmax(W′ ′ h + b′ ′)

A Uniform Distribution Over Past Words
Bag of Words

15

• An architecture that functions similar to a soft query-key-value
dictionary lookup

• Given a query and a key-value dictionary
where ,

1. Compute a probability distribution over dictionary entries

2. Output is weighted average of values:

q ∈ ℝdk {(k(i), v(i))}N
i=1

k(i) ∈ ℝdk v(i) ∈ ℝdv

ai = q ⋅ k(i) , p(i) = softmax(a)

z ∈ ℝdv z =
N

∑
i=1

p(i)v(i)

Attention

16

• Attention where the query, keys, and values come from the same input

• Given a set of vectors and a query position we
want to create a weighted sum of all vectors

1. Compute query, keys, and values vectors via linear transformation

2. Compute a probability distribution over dictionary entries

3. Output is weighted average of values:

{x(1), …, x(N)} j ∈ 1,…, N

q = Wqx(j) k(i) = Wkx(i) v(i) = Wvx(i)

ai = q ⋅ k(i) , p(i) = softmax(a)

z ∈ ℝdv z =
N

∑
i=1

p(i)v(i)

Self-attention

17

• Computing attention using loops is crazy slow → it is critical to
do everything with a few matrix multiplications by packing all
keys and values in matrices and

• We usually compute for multiple queries , resulting in multiple
outputs

• Finally, it is common to divide by because the dot-product
is likely to get large in relation the key dimensionality

K V

Q
Z

dk

SelfAttn(Q, K, V) = Z = softmax(QK/ dk)V

More Important Details
Self-attention

18

• Reminder, this is the simple BOW LM we showed
earlier

• We can easily plug in self-attention to create a
weighted processing of the context

• The query is computed from the most recent token

• Keys and values are computed from entire context
(i.e., all previous tokens)

• Did we solve the issues with BOW?

- ✅ Words can’t depend on context differently

- ❌ Attention is order invariant

p(j) =
1
i

, j = 1,…, i

h = tanh(W′ ∑i
j=1 p(j)ϕ(xj) + b′)

p(xi+1 |x1, …, xi) = softmax(W′ ′ h + b′ ′)

From BOW to Self-attention
LM with Self-attention

19

q = Wqϕ(xi)
K = Wk[ϕ(x1)⋯ϕ(xi)]
V = Wv[ϕ(x1)⋯ϕ(xi)]
z = SelfAttn(q, K, V)
h = W′ ′ tanh(W′ z + b′) + b′ ′

p(xi+1 |x1, …, xi) = softmax(h)

• Idea: let’s mark positions

• Learning will figure out what how to use them

• Simple version: learnable embeddings

• More advanced: fixed embeddings, where
values determined by sine waves, with
different frequency and offset of each
dimensions

• Either way, add them to token embeddings

ϕp(i)

Self-attention with Positional Embeddings
Marking Positions

20

xj = ϕ(xj) + ϕp(j), j = 1,…, i
q = Wqxi

K = Wk[x1⋯xi]
V = Wv[x1⋯xi]
z = SelfAttn(q, K, V)
h = W′ ′ tanh(W′ z + b′) + b′ ′

p(xi+1 |x1, …, xi) = softmax(h)

• Did we solve the issues with
BOW?

- ✅ Words can’t depend on
context differently

- ✅ Attention is order
invariant

• Let’s make it more expressive!

🚀

Self-attention LM

21

xj = ϕ(xj) + ϕp(j), j = 1,…, i
q = Wqxi

K = Wk[x1⋯xi]
V = Wv[x1⋯xi]
z = SelfAttn(q, K, V)
h = W′ ′ tanh(W′ z + b′) + b′ ′

p(xi+1 |x1, …, xi) = softmax(h)

• Words need to
attend to different
elements in context

• But attention just
does weighted
average

• So: add more
attention heads

• Let be the number
of attention heads

L

Multiple Attention Heads
Self-attention LM

22

xj = ϕ(xj) + ϕp(j), j = 1,…, i

q(l) = W(l)
q xi

K(l) = W(l)
k [x1⋯xi]

V(l) = W(l)
v [x1⋯xi]

z = [SelfAttn(q(1), K(1), V(1)); ⋯; SelfAttn(q(L), K(L), V(L))]
h = W′ ′ tanh(W′ z + b′) + b′ ′

p(xi+1 |x1, …, xi) = softmax(h)

• Switch activation to (Gaussian Error
Linear Unit)

• Residual connection: shown to help with training
very deep networks

• LayerNorm (): shown to improve performance

- Post-norm (original and here)

- Pre-norm (modern)

GELU

LN

b = Module(LN(a)) + a

b = LN(Module(a) + a)

Add Neural Network Tricks
Self-attention LM

23

xj = ϕ(xj) + ϕp(j), j = 1,…, i

q(l) = W(l)
q xi

K(l) = W(l)
k [x1⋯xi]

V(l) = W(l)
v [x1⋯xi]

z = LN([SelfAttn(q(1), K(1), V(1)); ⋯;
SelfAttn(q(L), K(L), V(L))] + xi)

h = LN(W′ ′ GELU(W′ z + b′) + b′ ′ + z)
p(xi+1 |x1, …, xi) = softmax(h)

• Abstract the whole computation as a Transformer block

• And stack it

Abstract and Stack It
Self-attention LM

24

TransformerBlockk(u1, …, ui) xi = ϕ(xi) + ϕp(i)

q(l) = W(l)
q ui h1

i = TransformerBlock1(x1, …, xi)

K(l) = W(l)
k [u1⋯ui] h2

i = TransformerBlock2(h1
1, …, h1

i)

V(l) = W(l)
v [u1⋯ui] …

z = LN([SelfAttn(q(1), K(1), V(1)); ⋯; hk
i = TransformerBlockk(hk−1

1 , …, hk−1
i)

SelfAttn(q(L), K(L), V(L))] + ui) …
hk

i = LN(W′ ′ GELU(W′ z + b′) + b′ ′ + z) hK
i = TransformerBlockK(hK−1

1 , …, hK−1
i)

p(xi+1 |x1, …, xi) = softmax(W𝒱hK
i)

• A variable length architecture

- Was not the first architecture
to do that

- But we are not following the
chronological order of events

• Key concept: self-attention

• Quickly became maybe the
most dominant architecture

- Try to think why

Transformers

25

Provided proper attribution is provided, Google hereby grants permission to
reproduce the tables and figures in this paper solely for use in journalistic or

scholarly works.

Attention Is All You Need

Ashish Vaswani⇤
Google Brain

avaswani@google.com

Noam Shazeer⇤
Google Brain

noam@google.com

Niki Parmar⇤
Google Research

nikip@google.com

Jakob Uszkoreit⇤
Google Research
usz@google.com

Llion Jones⇤
Google Research

llion@google.com

Aidan N. Gomez⇤ †

University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser⇤
Google Brain

lukaszkaiser@google.com

Illia Polosukhin⇤ ‡

illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

⇤Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started
the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and
has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head
attention and the parameter-free position representation and became the other person involved in nearly every
detail. Niki designed, implemented, tuned and evaluated countless model variants in our original codebase and
tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and
efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and
implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating
our research.

†Work performed while at Google Brain.
‡Work performed while at Google Research.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

ar
X

iv
:1

70
6.

03
76

2v
7

 [c
s.C

L]
 2

 A
ug

 2
02

3

[Vaswani et al. 2017]

Decoder-only Variant
The Transformer

26

Figure 1: The Transformer - model architecture.

around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

3

Figure 1: The Transformer - model architecture.

around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

3

× K

[Vaswani et al. 2017]

SelfAttn(Q, K, V) = softmax(QK / dk)V

Self-attention reminder During learning, compute the whole
sequence at ones by masking items
you shouldn’t attend to in —
easy by setting to

softmax
softmax −∞

TransformerBlockk(u1, …, ui) xi = ϕ(xi) + ϕp(i)

q(l) = W(l)
q ui h1

i = TransformerBlock1(x1, …, xi)

K(l) = W(l)
k [u1⋯ui] h2

i = TransformerBlock2(h1
1, …, h1

i)

V(l) = W(l)
v [u1⋯ui] …

z = LN([SelfAttn(q(1), K(1), V(1)); ⋯; hk
i = TransformerBlockk(hk−1

1 , …, hk−1
i)

SelfAttn(q(L), K(L), V(L))] + ui) …
hk

i = LN(W′ ′ GELU(W′ z + b′) + b′ ′ + z) hK
i = TransformerBlockK(hK−1

1 , …, hK−1
i)

p(xi+1 |x1, …, xi) = softmax(W𝒱hK
i)

• For each time step:

- Input: previous word (and
everything computed before)

- Output: probability
distribution over the
vocabulary

Shifted Outputs as Inputs
Transformer

27

<s> I love Lucy

</s>LucyloveI

Transformer

• Training loss is the per-token
negative log likelihood:

• During training: we know all
tokens

- So masked self-attention

- To account for ordering

• Transformers are very sensitive
to learning rate schedule →
linear warm up + cosine decay

ℒ = − log p(xi |x1, …, xi−1)

Language Model Training
Transformer

28

• Time and memory complexity

- Time: attention is quadratic in sequence length

- Memory: Need to keep almost all past activation for self-
attention

• Positional embeddings mean you can only handle positions up to
the length you observed in training

• A lot of existing and ongoing work on both issues

O(n2) n

Issues
Transformer

29

• Some complexities you will encounter:

- Masking self-attention

- Batching

- Learning rate sensitivity

Technical Complexities
Transformer

30

• Transformers were designed
with hardware in mind

- Especially TPUs, but also
GPUs

• Exceptionally designed for scale
as far as hardware

• Turns out, also scale well for
learning

• Unparalleled success in NLP,
vision, speech, RL, science, and
other areas

A Success Story
Transformers

31

Natural Language
Transformers

32

Decoder-only

GPT

Encoder-only

BERT

Encoder-decoder

T5

• ViT: cut image to patches

• Project each patch to a vector

• Treat them as token embeddings

Computer Vision
Transformers

33
[Dosovitskiy et al. 2020]

• Same as computer vision

• But: spectrograms instead of
images

• The Whisper model

Speech
Transformers

34 [Radford et al. 2022]

• Decision Transformers

• Inputs are action states and
target values

• Value is (in a nutshell) how
much reward you want to get

• Outputs are actions

Reinforcement Learning (RL)
Transformers

35

Decision Transformer: Reinforcement
Learning via Sequence Modeling

Lili Chen⇤,1, Kevin Lu⇤,1, Aravind Rajeswaran2, Kimin Lee1,
Aditya Grover2, Michael Laskin1, Pieter Abbeel1, Aravind Srinivas†,1, Igor Mordatch†,3

⇤equal contribution †equal advising
1UC Berkeley 2Facebook AI Research 3Google Brain

{lilichen, kzl}@berkeley.edu

Abstract

We introduce a framework that abstracts Reinforcement Learning (RL) as a se-
quence modeling problem. This allows us to draw upon the simplicity and scalabil-
ity of the Transformer architecture, and associated advances in language modeling
such as GPT-x and BERT. In particular, we present Decision Transformer, an
architecture that casts the problem of RL as conditional sequence modeling. Un-
like prior approaches to RL that fit value functions or compute policy gradients,
Decision Transformer simply outputs the optimal actions by leveraging a causally
masked Transformer. By conditioning an autoregressive model on the desired
return (reward), past states, and actions, our Decision Transformer model can gen-
erate future actions that achieve the desired return. Despite its simplicity, Decision
Transformer matches or exceeds the performance of state-of-the-art model-free
offline RL baselines on Atari, OpenAI Gym, and Key-to-Door tasks.

R s a

a

s

a

a

causal transformer
emb. + pos. enc.

linear decoder

. . .

21
return state action

. . .

^ R̂

Figure 1: Decision Transformer architecture1. States, actions, and returns are fed into modality-
specific linear embeddings and a positional episodic timestep encoding is added. Tokens are fed into
a GPT architecture which predicts actions autoregressively using a causal self-attention mask.

1Our code is available at: https://sites.google.com/berkeley.edu/decision-transformer

ar
X

iv
:2

10
6.

01
34

5v
2

 [c
s.L

G
]

24
 Ju

n
20

21

[Chen et al. 2021]

• Take observations and
commands, all tokenized

• Output continuous joint control
actions

Robotics
Transformers

36 [Brohan et al. 2023]

• Whatever you can tokenize, the Transformer will take

• What more: you can feed them all to the same model

Everything Everywhere All at Once
Transformers

37
[image from: https://deepmind.google/discover/blog/rt-2-new-model-translates-vision-and-language-into-action/]

https://deepmind.google/discover/blog/rt-2-new-model-translates-vision-and-language-into-action/

• Some content was adapted from slides by Lucas Beyer

• We thank Greg Durrett, Ana Marasović, and Christian von der
Weth for very helpful discussions.

Acknowledgements

38

https://docs.google.com/presentation/d/1ZXFIhYczos679r70Yu8vV9uO6B1J0ztzeDxbnBxD1S0/edit#slide=id.g31364026ad_3_2

